A thin-reflector microfluidic resonator for continuous-flow concentration of microorganisms: a new approach to water quality analysis using acoustofluidics.

نویسندگان

  • Dario Carugo
  • Tobias Octon
  • Walid Messaoudi
  • Adam L Fisher
  • Michele Carboni
  • Nick R Harris
  • Martyn Hill
  • Peter Glynne-Jones
چکیده

An acoustofluidic device has been developed for concentrating vegetative bacteria in a continuous-flow format. We show that it is possible to overcome the disruptive effects of acoustic streaming which typically dominate for small target particles, and demonstrate flow rates compatible with the testing of drinking water. The device consists of a thin-reflector multi-layered resonator, in which bacteria in suspension are levitated towards a glass surface under the action of acoustic radiation forces. In order to achieve robust device performance over long-term operation, functional tests have been carried out to (i) maintain device integrity over time and stabilise its resonance frequency, (ii) optimise the operational acoustic parameters, and (iii) minimise bacterial adhesion on the inner surfaces. Using the developed device, a significant increase in bacterial concentration has been achieved, up to a maximum of ~60-fold. The concentration performance of thin-reflector resonators was found to be superior to comparable half-wave resonators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waste water ammonia stripping intensification using microfluidic system

This paper reports the results of experimentally removing ammonia from synthetically prepared ammonia solution using a micro scale mixing loop air stripper. Effects of various operational parameters (such as: pH, air flow rate, wastewater flow rate and initial ammonia concentration) were evaluated. By increasing the pH from 10 to 12.25 the amount of KLa increased from 0.26 to 0.73 hr-1. A consi...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

Physical Modeling of Steel Delivery during Thin Slab Continuous Casting

A full scale physical model of a thin slab caster with a four-hole design submerged entry nozzle (SEN) was constructed. On the basis of the dimensionless Reynolds and Froude similitude criteria, the fluid flow in a full-scale model is similar to that of the actual system and, hence, the data obtained from the water model can be applied to the actual system. In order to determine the optimum ope...

متن کامل

Analysis of InGaAsP-InP Double Microring Resonator using Signal Flow Graph Method

The buried hetero-structure (BH) InGaAsP-InP waveguide is used for asystem of double microring resonators (DMR). The light transmission and location ofresonant peaks are determined for six different sets of ring radii with different ordermode numbers. The effect of changing middle coupling coefficient on the box likeresponse is studied. It is found that the surge of coupling coefficient to the ...

متن کامل

Analysis of a solid state wave gyroscope with thin shell cylindrical resonator and calculation of its conversion factor

In this work the equations of motion of a Solid State Wave Gyroscope (SWG) with rotary thin cylindrical shell resonator is analyzed using the shell and plates elasticity theory. The gyroscope conversion factor found in this analytical study corresponds with the experimental results obtained and listed in the References. The function of the SWG to measure the angular velocity or the rotating ang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 14 19  شماره 

صفحات  -

تاریخ انتشار 2014